Forskningsgrupper
Publikasjoner og forskningsresultater
Vitenskapelige publikasjoner
Bieliavsky, Pierre; Gayral, Victor; Neshveyev, Sergey;
Tuset, Lars
(2024).
Quantization of locally compact groups associated with essentially bijective 1-cocycles.
International Journal of Mathematics.
https://doi.org/10.1142/S0129167X24500277
Müger, Michael;
Tuset, Lars
(2024).
The Mathieu conjecture for SU(2) reduced to an abelian conjecture.
Indagationes mathematicae.
Vol. 35.
https://doi.org/10.1016/j.indag.2023.10.001
Mueger, Michael;
Tuset, Lars
(2024).
The Mathieu conjecture for SU(2) reduced to an abelian conjecture.
Indagationes mathematicae.
Vol. 35.
https://doi.org/10.1016/j.indag.2023.10.001
De Commer, Kenny; Neshveyev, Sergiy;
Tuset, Lars
; Yamashita, Makoto
(2023).
Comparison of quantizations of symmetric spaces: cyclotomic Knizhnik-Zamolodchikov equations and Letzter-Kolb coideals.
79 s.
Forum of Mathematics, Pi.
Vol. 11.
https://doi.org/10.1017/fmp.2023.11
Tuset, Lars (2022). Analysis and Quantum Groups. ISBN: 978-3-031-07245-1. 646 s. Springer Nature.
Bieliavsky, Pierre; Gayral, Victor; Neshveyev, Sergey;
Tuset, Lars
(2021).
Quantization of subgroups of the affine group.
Journal of Functional Analysis.
Vol. 280.
https://doi.org/10.1016/j.jfa.2020.108844
Mueger, Michael;
Tuset, Lars
(2019).
On the moments of a polynomial in one variable.
Indagationes mathematicae.
Vol. 31.
https://doi.org/10.1016/j.indag.2019.11.003
Bielavsky, Pierre; Gayral, Victor; Neshveyev, Sergey;
Tuset, Lars
(2019).
Addendum. On deformations of C*-algebras by actions of Kahlerian Lie groups.
International Journal of Mathematics.
Vol. 30.
https://doi.org/10.1142/S0129167X19920022
De Commer, Kenny; Neshveyev, Sergey;
Tuset, Lars
; Yamashita, Makoto
(2019).
Ribbon braided module categories, quantum symmetric pairs and Knizhnik-Zamolodchikov equations.
Communications in Mathematical Physics.
Vol. 367.
https://doi.org/10.1007/s00220-019-03317-7
Bieliavsky, Pierre; Gayral, Victor; Neshveyev, Sergey;
Tuset, Lars
(2016).
On deformations of C∗-algebras by actions of Kählerian Lie groups.
25 s.
International Journal of Mathematics.
Vol. 27.
https://doi.org/10.1142/S0129167X16500233