Research groups
Publications and research
Scientific publications
Popescu, Mihaela;
Flåtten, Tore Halsne
(2021).
A study of blockage effects at the wind turbine and wind farm scales.
19 p.
Energies.
Vol. 14.
https://doi.org/10.3390/en14196124
Bore, Sigbjørn Løland;
Flåtten, Tore Halsne
(2020).
High-resolution large time-step schemes for inviscid fluid flow.
Applied Mathematical Modelling.
Vol. 81.
https://doi.org/10.1016/j.apm.2019.12.006
Linga, Gaute;
Flåtten, Tore Halsne
(2019).
A Hierarchy of Non-Equilibrium Two-Phase Flow Models.
ESAIM: Proceedings and Surveys.
Vol. 66.
https://doi.org/10.1051/proc/201966006
Flåtten, Tore Halsne
; Pelanti, Marica; Shyue, Keh-Ming
(2018).
A Numerical Model for Three-Phase
Liquid–Vapor–Gas Flows with
Relaxation Processes.
Springer Proceedings in Mathematics & Statistics.
Vol. 237.
https://doi.org/10.1007/978-3-319-91548-7_32
Prebeg, Marin;
Flåtten, Tore Halsne
; Müller, Bernhard
(2018).
Large time step HLL and HLLC schemes.
Modélisation mathématique et analyse numérique.
Vol. 52.
https://doi.org/10.1051/m2an/2017051
Prebeg, Marin;
Flåtten, Tore
; Müller, Bernhard
(2017).
Large Time Step Roe scheme for a common 1D two-fluid model.
Applied Mathematical Modelling.
Vol. 44.
https://doi.org/10.1016/j.apm.2016.12.010
Aarsnes, Ulf Jakob Flø;
Flåtten, Tore
; Aamo, Ole Morten
(2016).
Review of two-phase flow models for control and estimation.
Annual Reviews in Control.
Vol. 42.
https://doi.org/10.1016/j.arcontrol.2016.06.001
Lindqvist, Sofia Margareta; Aursand, Peder;
Flåtten, Tore
; Solberg, Anders Aase
(2016).
Large time step TVD schemes for hyperbolic conservation laws.
SIAM Journal on Numerical Analysis.
Vol. 54.
https://doi.org/10.1137/15M104935X
Morin, Alexandre;
Flåtten, Tore
(2016).
A two-fluid four-equation model with instantaneous thermodynamical equilibrium.
Modélisation mathématique et analyse numérique.
Vol. 50.
https://doi.org/10.1051/m2an/2015074
Solem, Susanne; Aursand, Peder;
Flåtten, Tore
(2015).
Wave dynamics of linear hyperbolic relaxation systems.
Journal of Hyperbolic Differential Equations.
Vol. 12.
https://doi.org/10.1142/S0219891615500186