English version
Lars Tuset

Lars Tuset

Forskningsgrupper

Vitenskapelige publikasjoner

Tuset, Lars ; Müger, Michael (2025). An integral formula for Lie groups, and the Mathieu conjecture reduced to Abelian non-Lie conjectures. Advances in Mathematics. Vol. 480.
https://doi.org/https://www.sciencedirect.com/scie

Bieliavsky, Pierre; Gayral, Victor; Neshveyev, Sergey; Tuset, Lars (2024). Quantization of locally compact groups associated with essentially bijective 1-cocycles. International Journal of Mathematics. Vol. 35.
https://doi.org/10.1142/S0129167X24500277

Müger, Michael; Tuset, Lars (2024). The Mathieu conjecture for SU(2) reduced to an abelian conjecture. Indagationes mathematicae. Vol. 35.
https://doi.org/10.1016/j.indag.2023.10.001

Commer, Kenny De; Neshveyev, Sergiy; Tuset, Lars ; Yamashita, Makoto (2023). Comparison of quantizations of symmetric spaces: cyclotomic Knizhnik-Zamolodchikov equations and Letzter-Kolb coideals. Forum of Mathematics, Pi. Vol. 11.
https://doi.org/10.1017/fmp.2023.11

Tuset, Lars (2022). Analysis and Quantum Groups. ISBN: 9783031072451. 646 s. Springer Nature.

Bieliavsky, Pierre; Gayral, Victor; Neshveyev, Sergey; Tuset, Lars (2021). Quantization of subgroups of the affine group. Journal of Functional Analysis. Vol. 280.
https://doi.org/10.1016/j.jfa.2020.108844

Mueger, Michael; Tuset, Lars (2019). On the moments of a polynomial in one variable. Indagationes mathematicae. Vol. 31.
https://doi.org/10.1016/j.indag.2019.11.003

Commer, Kenny De; Neshveyev, Sergey; Tuset, Lars ; Yamashita, Makoto (2019). Ribbon braided module categories, quantum symmetric pairs and Knizhnik-Zamolodchikov equations. Communications in Mathematical Physics. Vol. 367.
https://doi.org/10.1007/s00220-019-03317-7

Bielavsky, Pierre; Gayral, Victor; Neshveyev, Sergey; Tuset, Lars (2019). Addendum. On deformations of C*-algebras by actions of Kahlerian Lie groups. International Journal of Mathematics. Vol. 30.
https://doi.org/10.1142/S0129167X19920022

Bieliavsky, Pierre; Gayral, Victor; Neshveyev, Sergey; Tuset, Lars (2016). On deformations of C∗-algebras by actions of Kählerian Lie groups. International Journal of Mathematics. Vol. 27.
https://doi.org/10.1142/S0129167X16500233





Publikasjonslisten er hentet ut av Nasjonalt vitenarkiv (NVA). Listen kan være ufullstendig.

Fagbøker⁄lærebøker

Tuset, Lars (2024). Abstract Algebra via Numbers. ISBN: 9783031746222. 452 s. Springer Nature.
https://link.springer.com/content/pdf/10.1007/978-



Publikasjonslisten er hentet ut av Nasjonalt vitenarkiv (NVA). Listen kan være ufullstendig.

Forskningsrapporter

Bedos, Erik Christopher; Murphy, Gerard M.; Tuset, Lars (2001). Amenability and co-amenability of algebraic quantum groups II. ISBN: 9788255313144. 34 s. Matematisk Institutt, UiO.

Bedos, Erik Christopher; Conti, Roberto; Tuset, Lars (2001). On amenability and co-amenability of algebraic quantum groups and their corepresentations. ISBN: 9788255313182. 46 s. Matematisk Institutt, UiO.

Bedos, Erik Christopher; Murphy, Gerard M.; Tuset, Lars (2001). Amenability and co-amenability of algebraic quantum groups. ISBN: 9788255313137. 25 s. Matematisk Institutt, UiO.

Bedos, Erik Christopher; Murphy, Gerard M.; Tuset, Lars (2000). Co-amenability of compact quantum groups. ISBN: 9788255312598. 25 s. Matematisk Institutt, Univ. i Oslo.



Publikasjonslisten er hentet ut av Nasjonalt vitenarkiv (NVA). Listen kan være ufullstendig.

Formidling

Tuset, Lars (2017). Quantization; a mathematical tour. BIT's 1st Annual Conference of Quantum World-2017. World High Technology Society .

Tuset, Lars (2012). Quantum groups and spin-geometry. Operator algebra seminar. University of Cape Town.

Tuset, Lars (2011). Drinfeld twists and cohomology for quantum groups. Operator algebra seminar of Rieffel. University of California.

Tuset, Lars (2010). The Dirac Operator for Quantum Groups. Quantum Field Theory and Functional Analysis Seminar. Balliol College, Oxford University.

Tuset, Lars (2009). invariant cocycles for quantum groups and uniquenss of dirac operator. operator algebra seminar. jussieu.

Tuset, Lars (2009). invariant cocycles on quantum groups and uniqueness of Dirac operator. 25th nordic and 1st british-nordic congress of mathyematicians. UiO.

Tuset, Lars (2009). uniqueness of dirac operator. noncommutative gemetry and quantum physics. Tor Vergata.

Tuset, Lars (2009). Quantum Groups and Noncommutative Geometry. Functional Analysis Conference. Stellenbosch University.

Tuset, Lars (2007). Quantum groups as non-commutative manifolds. Quantum groups and non-commutative manifolds. Max Planck Institutt.

Tuset, Lars (2007). Quantum groups are non-commutative manifolds. Fifth spring institute on non-commutative geometry abd operator algebras. Vanderbilt University.





Publikasjonslisten er hentet ut av Nasjonalt vitenarkiv (NVA). Listen kan være ufullstendig.