Forskningsgrupper
Forskningsprosjekter
-
AI-Mind
Prosjektet har som mål å redusere utfordringene ved demens med å utvikle nye diagnostiserende verktøy og forbedre effektiviteten i helsesystemet.
-
Teknologi og kunnskapsoverføring basert på samarbeid mellom Tsjekkia og Norge
Dette samarbeidsprosjektet mellom OsloMet og universitetet Hradec Králové i Tsjekkia vil utveksle erfaringer med teknologi- og kunnskapsoverføring.
Publikasjoner og forskningsresultater
Vitenskapelige publikasjoner
Bhandari, Shailendra
; Lencastre, Pedro;
Lind, Pedro
(2024).
Modeling stochastic eye tracking data: A comparison of quantum
generative adversarial networks and Markov models.
8 s.
Association for Computing Machinery.
https://doi.org/10.1145/3638530.3664134
Mathema, Rujeena; Lind, Pedro ; Lencastre, Pedro (2024). Exploring Human Cognition From Eye-Movements: Is There Unconscious Visual Information?. Association for, Computing Mach (Red.). ICDAR 2024 Proceedings. s. 19-26. Association for Computing Machinery (ACM).
Lencastre, Pedro;
Lotfigolian, Maryam
;
Lind, Pedro
(2024).
Identifying Autism Gaze Patterns in Five-Second Data Records.
Diagnostics (Basel).
Vol. 14.
https://doi.org/10.3390/diagnostics14101047
Papanikolaou, Christos; Sharma, Akriti;
Lind, Pedro
; Lencastre, Pedro
(2024).
Lévy Flight Model of Gaze Trajectories to Assist in ADHD Diagnoses.
Entropy.
Vol. 26.
https://doi.org/10.3390/e26050392
Glover, Tom Eivind
; Jahren, Ruben; Francesco, Martinuzzi;
Lind, Pedro
;
Nichele, Stefano
(2024).
A sensitivity analysis of cellular automata and heterogeneous topology networks: partially-local cellular automata and homogeneous homogeneous random boolean networks.
International Journal of Parallel, Emergent and Distributed Systems.
https://doi.org/10.1080/17445760.2024.2396334
Takyi, Ebenezer; Lind, Pedro ; Russo, Ana (2024). A Markov-chain model for assessing heatwaves and droughts in Iberian Peninsula. Campus de Azurém, Guimaraes (Red.). ICEE 2024 Proceedings. s. 597-602. Campus de Azurém, 4800-058, Guimarães, Portugal.
Upreti, Ramesh;
Lind, Pedro
; Elmokashfi, Ahmed;
Yazidi, Anis
(2024).
Trustworthy machine learning in the context of security and privacy.
International Journal of Information Security.
Vol. 23.
https://doi.org/10.1007/s10207-024-00813-3
Lencastre, Pedro;
Yazidi, Anis
;
Lind, Pedro
(2024).
Modeling Wind-Speed Statistics beyond the Weibull Distribution.
Energies.
https://doi.org/10.3390/en17112621
Ojha, Jaya;
Haugerud, Hårek
;
Yazidi, Anis
;
Lind, Pedro
(2024).
Exploring Interpretable AI Methods for ECG Data Classification.
Association for, Computing Mach (Red.).
ICDAR 2024 Proceedings. s. 11-18.
Association for Computing Machinery (ACM).
https://doi.org/10.1145/3643488.3660294
Rego Lencastre e Silva, Pedro
;
Yazidi, Anis
;
Lind, Pedro
(2024).
Modeling Wind-Speed Statistics beyond the Weibull Distribution.
Energies.
Vol. 17.
https://doi.org/10.3390/en17112621